The structure and function of mammalian and plant globins

Simon Brown, Yow Kong Soon

Abstract


Globins are haemoproteins such as haemoglobin (Hb), myoglobin (Mb), cytoglobin (Cb), neuroglobin (Nb), leghaemoglobin (LHb) and non-symbiotic Hb (NsHb).  While the monomers of these six proteins have the characteristic ‘3-on-3’ alpha-helical sandwich tertiary structure and there are similarities in their patterns of secondary structure, they have poor primary sequence homology.  Moreover, they differ in quaternary structure and in the coordination of the haem, three (Hb, Mb, LHb) being 5-coordinate and Cb, Nb and NsHb being 6-coordinate.  Despite this, each of these globins binds small ligands, such as O2, CO and NO, in the sixth position, which implies that it must be possible to displace the imidazole occupying that position in Cb, Nb and NsHb.  In addition to O2 binding, globins are variously involved in O2 sensing and NO detoxification, and act as an NO dioxygenase.   These functions can generate the oxidised (or met-) form of the globin, which may be reduced by a globin reductase.  In the case of Hb two globin reductases have been characterised: a non-enzymatic reduction by cytochrome b5, which is enzymatically reduced by NADH:cytochrome b5 reductase, and an NADPH:flavin reductase.

Keywords


chemistry; biology; globin; globin reductase; ligand binding; structure

References


The DOI for this article is: 10.12969/Scientia.Vol124.Sect2.Art05

Nemeth P.M., Lowry O.H., 1984. Myoglobin levels in individual human skeletal muscle fibers of different types. J Histochem Cytochem, 32(11):1211-1216, http://jhc.sagepub.com/content/32/11/1211

Qiu Y., Sutton L., Riggs A.F., 1998. Identification of myoglobin in human smooth muscle. J Biol Chem, 273(36):23426-32, http://dx.doi.org/10.1074/jbc.273.36.23426

Burmester T., Weich B., Reinhardt S., Hankeln T., 2000. A vertebrate globin expressed in the brain. Nature, 407(6803):520-523, http://dx.doi.org/10.1038/35035093

Reuss S., Saaler-Reinhardt S., Weich B., Wystub S., Reuss M.H., Burmester T., Hankeln T., 2002. Expression analysis of neuroglobin mRNA in rodent tissues. Neurosci, 115(3):645-656, http://dx.doi.org/10.1016/S0306-4522%2802%2900536-5

Geuens E., Brouns I., Flamez D., Dewilde S., Timmermans J.P., Moens L., 2003. A globin in the nucleus! J Biol Chem, 278(33):30417-30420, http://dx.doi.org/10.1074/jbc.C300203200

Schmidt M., Giessl A., Laufs T., Hankeln T., Wolfrum U., Burmester T., 2003. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J Biol Chem, 278(3):1932-1935, http://dx.doi.org/10.1074/jbc.M209909200

Wystub S., Laufs T., Schmidt M., Burmester T., Maas U., Saaler-Reinhardt S., Hankeln T., Reuss S., 2003. Localization of neuroglobin protein in the mouse brain. Neurosci Lett, 346(1-2):114-116, http://dx.doi.org/10.1016/S0304-3940%2803%2900563-9

Burmester T., Ebner B., Weich B., Hankeln T., 2002. Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol, 19(4):416-421, http://mbe.oxfordjournals.org/content/19/4/416.abstract

Trent J.T., III, Hargrove M.S., 2002. A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem, 277(22):19538-19545, http://dx.doi.org/doi:10.1074/jbc.M201934200

Arredondo-Peter R., Hargrove M.S., Moran J.F., Sarath G., Klucas R.V., 1998. Plant hemoglobins. Plant Physiol, 118(4):1121-1125, http://dx.doi.org/10.1104/pp.118.4.1121

Garrocho-Villegas V., Gopalasubramaniam S.K., Arredondo-Peter R., 2007. Plant hemoglobins: what we know six decades after their discovery. Gene, 398(1-2):78-85, http://dx.doi.org/10.1016/j.gene.2007.01.035

Hoy J.A., Hargrove M.S., 2008. The structure and function of plant hemoglobins. Plant Physiol Biochem, 46(3):371-379, http://dx.doi.org/10.1016/j.plaphy.2007.12.016

Hardison R.C., 1996. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA, 93(12):5675-5679, http://www.pnas.org/content/93/12/5675.short

Perutz M.F., 1976. Structure and mechanism of haemoglobin. Brit Med Bull, 32(3):195-208, http://bmb.oxfordjournals.org.ezproxy.utas.edu.au/content/32/3/195.full.pdf+html

Murray J.W., Delumeau O., Lewis R.J., 2005. Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci USA, 102(48):17320-17325, http://dx.doi.org/10.1073/pnas.0506599102

Fox H.M., 1949. On chlorocruorin and haemoglobin. Proc R Soc Lond, 136B(884):378-388, http://www.jstor.org/stable/82565

Lemberg R., Falk J.E., 1951. Comparison of haem a, the dichroic haem of heart muscle, and of porphyrin a with compounds of known structure. Biochem J, 49(5):674-683, http://www.biochemj.org/bj/049/bj0490674.htm

Brill A.S., 1977. Transition metals in biochemistry. Springer-Verlag, Berlin

Brill A.S., Fiamingo F.G., Gerstman B.S., 1995. Electronic paramagnetism in biomolecular structure and function. Am J Physics, 63(12):1096-1114, http://dx.doi.org/10.1119/1.18015

Brill A.S., Williams R.J.P., 1961. The absorption spectra, magnetic moments and the binding of iron in some haemoproteins. Biochem J, 78(2):246-253, http://www.biochemj.org/bj/078/bj0780246.htm

Pesce A., Bolognesi M., Bocedi A., Ascenzi P., Dewilde S., Moens L., Hankeln T., Burmester T., 2002. Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. EMBO Rep, 3(12):1146-1151, http://dx.doi.org/10.1093/embo-reports/kvf248

Hargrove M.S., Brucker E.A., Stec B., Sarath G., Arredondo-Peter R., Klucas R.V., Olson J.S., Phillips G.N., Jr., 2000. Crystal structure of a nonsymbiotic plant hemoglobin. Structure, 8(9):1005-1014, http://dx.doi.org/10.1016/S0969-2126%2800%2900194-5

Pesce A., De Sanctis D., Nardini M., Dewilde S., Moens L., Hankeln T., Burmester T., Ascenzi P., Bolognesi M., 2004. Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin. IUBMB Life, 56(11-12):657-664, http://dx.doi.org/10.1080/15216540500078830

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24):4876-4882, http://dx.doi.org/10.1093/nar/25.24.4876

Makino M., Sugimoto H., Sawai H., Kawada N., Yoshizato K., Shiro Y., 2006. High-resolution structure of human cytoglobin: identification of extra N- and C-termini and a new dimerization mode. Acta Cryst, D62(6):671-677, http://dx.doi/og/10.1107/S0907444906013813

Ascenzi P., Salvati L., Brunori M., 2001. Does myoglobin protect Trypanosoma cruzi from the antiparasitic effects of nitric oxide? FEBS Lett, 501(2-3):103-105, http://dx.doi.org/10.1016/S0014-5793%2801%2902637-0

Makino M., Sawai H., Shiro Y., Sugimoto H., 2011. Crystal structure of the carbon monoxide complex of human cytoglobin. Proteins, 79(4):1143-1153, http://dx.doi.org/10.1002/prot.22950

Eaton W.A., Henry E.R., Hofrichter J., Mozzarelli A., 2006. Is cooperative oxygen binding by hemoglobin really understood? Rend Fis Acc Lincei, 17(1-2):147-162, http://dx.doi.org/10.1007/BF02904506

Whitaker T.L., Berry M.B., Ho E.L., Hargrove M.S., Phillips G.N., Jr, Komiyama N.H., Nagai K., Olson J.S., 1995. The D-helix in myoglobin and in the b subunit of hemoglobin is required for the retention of heme. Biochem, 34(26):8221-8226, http://dx.doi.org/10.1021/bi00026a002

Trent J.T., III, Watts R.A., Hargrove M.S., 2001. Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem, 276(32):30106-30110, http://dx.doi.org/10.1074/jbc.C100300200

Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L., 2001. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem, 276(42):38949-38955, http://dx.doi.org/10.1074/jbc.M106438200

Harutyunyan E.H., Safonova T.N., Kuranova I.P., Popov A.N., Teplyakov A.V., Obmolova G.V., Vainshtein B.K., Dodson G.G., Wilson J.C., 1996. The binding of carbon monoxide and nitric oxide to leghaemoglobins in comparion with other haemoglobins. J Mol Biol, 264(1):152-161, http://dx.doi.org/10.1006/jmbi.1996.0630

Hargrove M.S., 2000. A flash photolysis method to characterize hexacoordinate hemoglobin kinetics. Biophys J, 79(5):2733-2738, http://dx.doi.org/10.1016/S0006-3495%2800%2976512-X

Olson J.S., Rohlfs R.J., Gibson Q.H., 1987. Ligand recombination to the a and b subunits of human hemoglobin. J Biol Chem, 262(27):12930-12938, http://www.jbc.org/content/262/27/12930.abstract

Gibson Q.H., Olson J.S., McKinnie R.E., Rohlfs R.J., 1986. A kinetic description of ligand binding to sperm whale myoglobin. J Biol Chem, 261(22):10228-10239, http://www.jbc.org/content/261/22/10228.abstract

Van Doorslaer S., Dewilde S., Kiger L., Nistor S.V., Goovaerts E., Marden M.C., Moens L., 2003. Nitric oxide binding properties of neuroglobin. A characterization by EPR and flash photolysis. J Biol Chem, 278(7):4919-4925, http://dx.doi:10.1074/jbc.M210617200

Alberty R.A., 1994. Recommendations for nomenclature and tables in biochemical thermodynamics. Pure Appl Chem, 66(8):1641-1666, http://dx.doi.org/10.1351/pac199466081641

Berne R.M., Levy M.N., 1988. Physiology. Mosby, St. Louis

Jelicks L.A., Wittenberg B.A., 1995. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart. Biophys J, 68(5):2129-2136, http://dx.doi.org/10.1016/S0006-3495%2895%2980395-4

Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T., 2005. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem, 99(1):110-119, http://dx.doi.org/10.1016/j.jinorgbio.2004.11.009

Halligan K.E., Jourd'heuil F.L., Jourd'heuil D., 2009. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem, 284(13):8539-8547, http://dx.doi.org/10.1074/jbc.M808231200

Sun Y., Jin K., Mao X.O., Zhu Y., Greenberg D.A., 2001. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA, 98(26):15306-15311, http://dx.doi.org/10.1073/pnas.251466698

Herold S., Fago A., Weber R.E., Dewilde S., Moens L., 2004. Reactivity studies of the Fe(III) and Fe(II)NO forms of human neuroglobin reveal a potential role against oxidative stress. J Biol Chem, 279(22):22841-22847, http://dx.doi.org/10.1074/jbc.M313732200

Sun Y., Jin K., Peel A., Mao X.O., Xie L., Greenberg D.A., 2003. Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA, 100(6):3497-3500, http://dx.doi.org/10.1073/pnas.0637726100

Kundu S., Trent J.T., III, Hargrove M.S., 2003. Plants, humans and hemoglobins. Trends Plant Sci, 8(8):387-393, http://dx.doi.org/10.1016/S1360-1385%2803%2900163-8

Wittenberg J.B., Bergersen F.J., Appleby C.A., Turner G.L., 1974. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem, 249(13):4057-4066, http://www.jbc.org/content/249/13/4057.abstract

MacDonald R., 1977. Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia, 32(6):544-553, http://dx.doi.org/10.1111/j.1365-2044.1977.tb10002.x

Jensen F.B., 2004. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand, 182(3):215-227, http://dx.doi.org/10.1111/j.1365-201X.2004.01361.x

Rapoport T.A., Heinrich R., Rapoport S.M., 1976. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem J, 154(2):449-469, http://www.biochemj.org/bj/154/bj1540449.htm

Arnone A., 1972. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature, 237(5351):146-149, http://dx.doi.org/10.1038/237146a0

Hoffman B.M., Gibson Q.H., 1978. On the photosensitivity of liganded hemoproteins and their metal-substituted analogues. Proc Natl Acad Sci USA, 75(1):21-25, http://www.pnas.org/content/75/1/21.abstract

Gibson Q.H., Antonini E., 1960. Kinetic studies on the reaction between native globin and haem derivatives. Biochem J, 77(2):328-341, http://www.biochemj.org/bj/077/bj0770328.htm

Jongeward K.A., Magde D., Taube D.J., Traylor T.G., 1988. Picosecond kinetics of cytochromes b5 and c. J Biol Chem, 263(13):6027-6030, http://www.jbc.org/content/263/13/6027.abstract

Bocahut A., Derrien V., Bernard S., Sebban P., Sacquin-Mora S., Guittet E., Lescop E., 2013. Heme orientation modulates histidine dissociation and ligand binding kinetics in the hexacoordinated human neuroglobin. J Biol Inorg Chem, 18(1):111-122, http://dx.doi.org/10.1007/s00775-012-0956-2

Rossi-Fanelli A., Antonini E., 1960. Dissociation of hematin from hemoproteins at neutral pH. J Biol Chem, 235(2):PC4-PC5, http://www.jbc.org/content/235/2/PC4.full.pdf+html

Gibson Q.H., Antonini E., 1963. Rates of reaction of native human globin with some hemes. J Biol Chem, 238(4):1384-1388, http://www.jbc.org/content/238/4/1384.full.pdf+html

Gebe J.A., Peyton D.H., Peyton J.A., 1989. Optical spectroscopic observation of a metastable form of sperm whale myoglobin generated by reconstitution. Biochem Biophys Res Commun, 161(1):290-294, http://dx.doi.org/10.1016/0006-291X%2889%2991594-5

Aojula H.S., Wilson M.T., Morrison I.G., 1987. Functional consequences of haem orientational disorder in sperm-whale and yellow-fin-tuna myoglobins. Biochem J, 243(1):205-210, http://www.biochemj.org/bj/243/bj2430205.htm

Austin R.H., Beeson K.W., Eisenstein L., Frauenfelder H., Gunsalus I.C., 1975. Dynamics of ligand binding to myoglobin. Biochem, 14(24):5355-5373, http://dx.doi.org/10.1021/bi00695a021

Kalinga S., 2006. Interaction of peroxynitrite with myoglobin and hemoglobin. Can J Chem, 84(5):788-793, http://dx.doi.org/10.1139/v06-067

Liu X., Follmer D., Zweier J.R., Huang X., Hemann C., Lui K., Druhan L.J., Zweier J.L., 2012. Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochem, 51(25):5072-5082, http://dx.doi.org/10.1021/bi300291h

Flögel U., Merx M.W., Gödecke A., Decking U.K., Schrader J., 2001. Myoglobin: A scavenger of bioactive NO. Proc Natl Acad Sci USA, 98(2):735-740, http://dx.doi.org/10.1073/pnas.98.2.735

Burmester T., Hankeln T., 2004. Neuroglobin: a respiratory protein of the nervous system. News Physiol Sci, 19(3):110-113, http://dx.doi.org/10.1152/nips.01513.2003

Li W., Wu Y., Ren C., Lu Y., Gao Y., Zheng X., Zhang C., 2011. The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger. Proteins, 79(1):115-125, http://dx.doi.org/10.1002/prot.22863

Raychaudhuri S., Skommer J., Henty K., Birch N., Brittain T., 2010. Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis, 15(4):401-411, http://dx.doi.org/10.1007/s10495-009-0436-5

Herold S., Puppo A., 2005. Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem, 10(8):935-945, http://dx.doi.org/10.1007/s00775-005-0046-9

Dordas C., Hasinoff B.B., Igamberdiev A.U., Manac'h N., Rivoal J., Hill R.D., 2003. Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J, 35(6):763-770, http://dx.doi.org/10.1046/j.1365-313X.2003.01846.x

Ryter S.W., Otterbein L.E., 2004. Carbon monoxide in biology and medicine. Bioessays, 26(3):270-280, http://dx.doi.org/10.1002/bies.20005

Wakasugi K., Nakano T., Morishima I., 2003. Oxidized human neuroglobin acts as a heterotrimeric Ga protein guanine nucleotide dissociation inhibitor. J Biol Chem, 278(38):36505-36512, http://dx.doi:10.1074/jbc.M305519200

Bewley M.C., Marohnic C.C., Barber M.J., 2001. The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent. Biochem, 40(45):13574-13582, http://dx.doi/org/10.1021/bi0106336

Tomoda A., Ida M., Tsuji A., Yoneyama Y., 1980. Mechanism of methaemoglobin reduction by human erythrocytes. Biochem J, 188(2):535-540, http://www.biochemj.org/bj/188/bj1880535.htm

Saari L.L., Klucas R.V., 1984. Ferric leghemoglobin reductase from soybean root nodules. Arch Biochem Biophys, 231(1):102-113, http://dx.doi.org/10.1016/0003-9861%2884%2990367-9

Passon P.G., Hultquist D.E., 1972. Soluble cytochrome b5 reductase from human erythrocytes. Biochim Biophys Acta, 275(1):62-73, http://dx.doi.org/10.1016/0005-2728%2872%2990024-2

Yubisui T., Matsuki T., Takeshita M., Yoneyama Y., 1979. Characterization of the purified NADPH-flavin reductase of human erythrocytes. J Biochem, 85(3):719-728, http://jb.oxfordjournals.org/content/85/3/719.abstract

Hagler L., Coppes R.I., Jr., Herman R.H., 1979. Metmyoglobin reductase. Identification and purification of a reduced nicotinamide adenine dinucleotide-dependent enzyme from bovine heart which reduces metmyoglobin. J Biol Chem, 254(14):6505-6514, http://www.jbc.org/content/254/14/6505.abstract

Livingston D.J., McLachlan S.J., La Mar G.N., Brown W.D., 1985. Myoglobin: cytochrome b5 interactions and the kinetic mechanism of metmyoglobin reductase. J Biol Chem, 260(29):15699-15707, http://www.jbc.org/content/260/29/15699.abstract

Nash D.T., Schulman H.M., 1976. The absence of oxidized leghemoglobin in soybean root nodules during nodule development. Biochem Biophys Res Commun, 68(3):781-785, http://dx.doi.org/10.1016/0006-291X%2876%2991213-4

Puppo A., Rigaud J., Job D., 1980. Leghemoglobin reduction by a nodule reductase. Plant Sci Lett, 20(1):1-6, http://dx.doi.org/10.1016/0304-4211%2880%2990063-2

Appleby C.A., Wittenberg B.A., Wittenberg J.B., 1973. Nicotinic acid as a ligand affecting leghemoglobin structure and oxygen reactivity. Proc Natl Acad Sci USA, 70(2):564-568, http://www.pnas.org/content/70/2/564.abstract

Wittenberg B.A., Wittenberg J.B., Appleby C.A., 1973. Leghemoglobin. I. Changes in conformation and chemical reactivity linked to reaction with acetic acid. J Biol Chem, 248(9):3178-3182, http://www.jbc.org/content/248/9/3178.abstract


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

SCIENTIA International Identifiers: ISSN: 2282-2119 . DOI prefix: 10.12969 . EAN: 977-2282-211-00-9 . Handle (hdl) prefix: 11167

Scientia ISSN code - Fax: +039 050 7620351