L’invariante integrale di Poincaré-Cartan e il Teorema di Helmholtz

Marcello Colozzo

Abstract


In quest’articolo dimostriamo il Secondo Teorema di Helmholtz utilizzando il formalismo dell’invariante integrale di Poincaré-Cartan.

Keywords


meccanica analitica; geometria differenziale; idrodinamica

References


The DOI for this article is: 10.12969/Scientia.Vol125.Sect2.Art01

Colozzo M., 2013. L’invariante integrale di Poincaré-Cartan, Scientia, 124:2.06, http://dx.doi.org/10.12969/Scientia.Vol124.Sect2.Art06

Gantmacher F.R., 1980. Lezioni di Meccanica Analitica, Editori Riuniti, Roma.

Moser J., Kyner W.T., 1968. Lectures on Hamiltonian Systems, Memoirs of the American Mathematical Society, 81, Part 2, http://dx.doi.org/10.1090/memo/0081

Byatt-Smith J.G.B., Braden H. W., 2008. Functional Equations and Poincaré Invariant Mechanical System, Arxiv:math-ph/0110012v1, http://arxiv.org/pdf/math-ph/0110012v1.pdf

Ed anche, 2003, SIAM Journal on Mathematical Analysis, 34(6):736-758, http://dx.doi.org/10.1137/S0036141001393742

Xiang-Wei C., Cui-Mei L., Yan-Min L., 2006. Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincaré equations, Chinese Phys. 15:470, http://dx.doi.org/10.1088/1009-1963/15/3/002

Guo Y., Jiang L., Yu Y., 2001. Poincaré and Poincaré-Cartan integral invariants of a generalized Hamiltonian system, Communications in Nonlinear Science and Numerical Simulation, 6(1):45–49, http://dx.doi.org/10.1016/S1007-5704%2801%2990028-0

Mukherjee A., Rastogi V., Dasgupta A., 2011. Revisiting umbra-Lagrangian–Hamiltonian mechanics: Its variational foundation and extension of Noether’s theorem and Poincare–Cartan integral. International Journal of Non-Linear Mechanics, 46(5):745–757, http://dx.doi.org/10.1016/j.ijnonlinmec.2011.02.008

Benavent F., Gomis J., 1979. Poincaré-Cartan integral invariant for constrained systems, Annals of Physics, 118(2):476–489, http://dx.doi.org/10.1016/0003-4916%2879%2990134-9

Obukhova Y.N., Hehla F.W., 2012. Extended Einstein–Cartan theory à la Diakonov: The field equations, Physics Letters B, 713:321-325, http://dx.doi.org/10.1016/j.physletb.2012.06.005

Meeting Announcement, 1989. Colloque International 1830–1930: Un siécle de gèometrie, de Gauss et Riemann à Poincar´e et Cartan: épistémologie et historie. Paris, (18)19-23 September 1989, Historia mathematica, 16(1):77–78, http://dx.doi.org/10.1016/0315-0860%2889%2990101-8

Boi, L., 1989. Colloque International 1830–1930: Un siécle de gèometrie, de Gauss et Riemann à Poincar´e et Cartan: épistémologie, historie, et mathématiques. Paris, 18-23 September 1989, Historia mathematica, 16(3):269, http://dx.doi.org/10.1016/0315-0860%2889%2990021-9

Meeting Report, 1990. Colloque International 1830–1930: Un siécle de gèometrie, de Gauss et Riemann à Poincar´e et Cartan: épistémologie, historie, et mathématiques, de Gauss et Riemann à Poincaré et Cartan. Paris, 18-23 September 1989, Historia mathematica, 17(2):162–164, http://dx.doi.org/10.1016/0315-0860%2890%2990058-L

Shu H. B., 1993. Application of the integral invariant of Poincar`e-Cartan to contact systems, Computers & Mathematics with Applications, 26(2):51–59, http://dx.doi.org/10.1016/0898-1221%2893%2990321-L

Tedone O., 1893. Sul moto di un fluido contenuto in un involucro ellissoidico solido, Il Nuovo Cimento, 33(1):160–179, http://dx.doi.org/10.1007/BF02709692


Full Text: PDF

Comments on this article

View all comments


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

SCIENTIA International Identifiers: ISSN: 2282-2119 . DOI prefix: 10.12969 . EAN: 977-2282-211-00-9 . Handle (hdl) prefix: 11167

Scientia ISSN code - Fax: +039 050 7620351